→ Se préparer au contrôle

Chapitre 13

Racines carrées - Equations du type $x^2 = a$

I. Racines carrées

Définition: a désigne un nombre positif.

La racine carrée de a est le nombre positif dont le carré est a.

Ce nombre est noté et se lit « racine de a ».

Ainsi, quel que soit le nombre positif a, $\sqrt{a} > 0$ et $(\sqrt{a})^2 = \dots$

Exemples: $\sqrt{25} = ... \text{ car}^2 = 25$ $\sqrt{64} = ... \text{ car}^2 = 64$

$$\sqrt{64} = \dots \text{ car } \dots^2 = 64$$

$$\sqrt{121} = \dots \text{ car } \dots^2 = 121$$

Voici la liste des carrés parfaits, c'est-à-dire les nombres dont sa racine carrée est un nombre entier.

Entier	0	1	2	3	4	5	6	7	8	9	10	11	12
Carré													

17 n'est pas un carré parfait, mais ... < 17 < ... donc ... $< \sqrt{17} <$... c'est-à-dire ... $< \sqrt{17} <$...

A la calculatrice $\sqrt{17} \approx \dots$ et donc $\left(\sqrt{17}\right)^2 = \dots$

$$(\sqrt{17})^2 = \dots$$

Exercice 1 : Calcule mentalement :

$$\sqrt{16} =$$

$$\sqrt{81} = ...$$

$$\sqrt{400} = ...$$

$$\sqrt{16} = \dots$$
 $\sqrt{81} = \dots$ $\sqrt{400} = \dots$ $\sqrt{10000} = \dots$ $\sqrt{0,09} = \dots$

$$\sqrt{0.09} = ...$$

Exercice 2 : Encadre chaque racine carrée entre deux nombres entiers consécutifs :

$$... < \sqrt{5} < ...$$

$$... < \sqrt{30} < ...$$

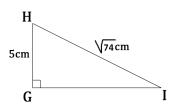
$$... < \sqrt{59} < ...$$

donc ...
$$< \sqrt{5} < ...$$

donc ...
$$< \sqrt{30} < ...$$

donc ...
$$<\sqrt{5}<$$
 ... donc ... $<\sqrt{30}<$... donc ... $<\sqrt{59}<$...

Exercice 3: Complète les égalités suivantes :


$$\left(\sqrt{7}\right)^2 = \dots$$

$$(\sqrt{....})^2 = 13$$

$$(-\sqrt{37})^2 = ...$$

Exercice 4: Dans chaque triangle, calcule la valeur exacte des longueurs manquantes:

II. Equations du type $x^2 = a$

Propriété: Soit a un nombre donné.

- Si a < 0 alors l'équation $x^2 = a$
- Si a = 0 alors l'équation $x^2 = a$ admet une solution :
- Si a > 0 alors l'équation $x^2 = a$ admet solutions:
 - l'une positive : $x_1 = \dots$ l'une négative : $x_2 = \dots$

Exemples : Résous les équations :

$$x^2 = -5$$

$$x^2 = 9$$

$$x^2 = 13$$

Exercice 5: Résous les équations suivantes :

$$x^2 = 36$$

$$x^2 = 11$$

$$x^2 = -4$$

$$4x^2 - 10 = 30$$

 $\underline{\textbf{Exercice 6}}: \quad \text{Voici un programme de calcul}:$

1) On note f la fonction, qui à x le nombre du départ, associe le nombre d'arrivée du programme de calcul. Donne l'expression de f(x).

- · Prendre son carré
- Multiplier par 3
- Ajouter 5

$$f(x) = \dots$$

2) Détermine les deux antécédents de 53 ?

3) Détermine les deux antécédents de 107 ?

Bonus: Un rectangle a un ratio longueur largeur 2: 1 Son aire est de 60,5 cm².

Quelles sont les dimensions du rectangle?