Chapitre 14:

Fonctions linéaires et affines - Pourcentages

I. Fonctions Affines / Linéaires

Exemple: La fonction f définie par f(x)=2x+4 est une fonction alors que la fonction g définie par g(x)=-3x est une fonction

Propriétés:

- La représentation graphique d'une fonction **linéaire** $g: x \mapsto a x$ est une passant par l'...... Le nombre a est appelé coefficient
- La représentation graphique d'une fonction **affine** $g: x \mapsto a x + b$ est une
- Le nombre a est appelé coefficientà l'origine.
 - Représentation graphique d'une fonction affine ou linéaire

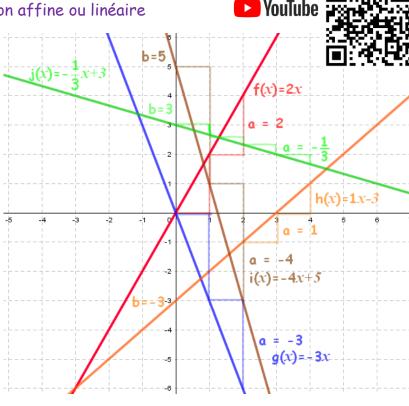
Vu que les représentations graphiques d'une fonction affine ou linéaires sont des, il suffit de placer points dans un repère (un seul même pour les fonctions linéaires car elles passent par l'......).

YouTube

Représentation graphique d'une fonction affine ou linéaire

Le nombre a est le coefficient

Si a > 0, alors la droite


Si a < 0, alors la droite

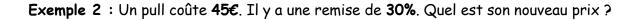
A partir de n'importe quel point de la droite, on se décale horizontalement d'une unité vers la droite et on regarde de combien on monte ou on descend.

Le coefficient a est donc ce nombre.

Pour déterminer **b** pour les fonctions affines, il suffit de lire le point d'intersection entre la droite et l'axe des

En effet, en remplaçant x par 0, on a $f(\mathbf{0}) = \mathbf{b}$

II. Lien avec les pourcentages


Exemple 1 : Un article coûte 50€. Il augmente de 20%. Quel est son nouveau prix?

Remarque : Il faut donc 2 étapes. Cela peut se résumer dans un seul calcul et en factorisant, on a :

$$50 + 50 \times \frac{20}{100} = 50 \times 1 + 50 \times \frac{20}{100} = 50 \left(1 + \frac{20}{100}\right) = 50(1 + 0.20) = 50 \times \dots = \dots$$

Cela revient donc à multiplier le prix par

Remarque : Il faut donc 2 étapes. Cela peut se résumer dans un seul calcul et en factorisant, on a :

$$45 - 45 \times \frac{30}{100} = 45 \times 1 - 45 \times \frac{30}{100} = 45 \left(1 - \frac{30}{100}\right) = 45(1 - 0.30) = 45 \times \dots = \dots$$

Cela revient donc à multiplier le prix par

Propriétés :

- Une augmentation de **p%** est donc modélisée par une multiplication par $\left(...+\frac{...}{...}\right)$.
- Une réduction ou diminution de **p%** est donc modélisée par une multiplication par $\left(...-\frac{...}{...}\right)$.

Exemples:

Augmenter un nombre de 20%	Multiplier par	
Diminuer un nombre de 40%	Multiplier par	
Augmenter un nombre de%	Multiplier par 1,7	
Diminuer un nombre de %	Multiplier par 0,85	
Augmenter un nombre de 200%	Multiplier par	
Diminuer un nombre de 5 %	Multiplier par	
un nombre de	Multiplier par 0,35	

Augmenter

un nombre

de 30% est modélisée par une fonction f(x) = ... x

Exemple 3: Un jean est affiché avec une réduction de 40%. Il coûte à présent 30€.

Quel était le prix initial?

Exemple 4 : Un lecteur DVD coûtait 45€.

Après une augmentation, il coûte 63€.

Quel est le pourcentage d'augmentation?

